Inhibition of Plasmodium falciparum Triose-phosphate Isomerase by Chemical Modification of an Interface Cysteine ELECTROSPRAY IONIZATION MASS SPECTROMETRIC ANALYSIS OF DIFFERENTIAL CYSTEINE
نویسنده
چکیده
Plasmodium falciparum triose-phosphate isomerase, a homodimeric enzyme, contains four cysteine residues at positions 13, 126, 196, and 217 per subunit. Among these, Cys-13 is present at the dimer interface and is replaced by methionine in the corresponding human enzyme. We have investigated the effect of sulfhydryl labeling on the parasite enzyme, with a view toward developing selective covalent inhibitors by targeting the interface cysteine residue. Differential labeling of the cysteine residues by iodoacetic acid and iodoacetamide has been followed by electrospray ionization mass spectrometry and positions of the labels determined by analysis of tryptic fragments. The rates of labeling follows the order Cys-196 > Cys-13 >> Cys-217/ Cys-126, which correlates well with surface accessibility calculations based on the enzyme crystal structure. Iodoacetic acid labeling leads to a soluble, largely inactive enzyme, whereas IAM labeling leads to precipitation. Carboxyl methylation of Cys-13 results in formation of monomeric species detectable by gel filtration. Studies with an engineered C13D mutant permitted elucidation of the effects of introducing a negative charge at the interface. The C13D mutant exhibits a reduced stability to denaturants and 7-fold reduction in the enzymatic activity even under the concentrations in which dimeric species are observed.
منابع مشابه
DFT Studies and Topological Analyses of Electron Density on Acetophenone and Propiophenone Thiosemicarbazone Derivatives as Covalent Inhibitors of Falcipain-2, a Major Plasmodium Falciparum Cysteine Protease
Thiosemicarbazones (TSCs) possess significant antimalarial properties believed to be linked to the inhibition of major cysteine proteases, such as falcipain-2, in Plasmodium falciparum. However, the binding modes of TSCs to the active site of these enzymes are not clear. As a result of this, the nature of the bonding interactions between the active site of falcipain-2 and different derivatives ...
متن کاملSynthetic peptides as inactivators of multimeric enzymes: inhibition of Plasmodium falciparum triosephosphate isomerase by interface peptides.
Synthetic peptides corresponding to two distinct segments of the subunit interface of the homodimeric enzyme triosephosphate isomerase (residues 9-18, ANWKCNGTLE, peptide I; residues 68-79, KFGNGSYTGEVS, peptide II) from Plasmodium falciparum (PfTIM) have been investigated for their ability to act as inhibitors by interfering with the quaternary structure of the enzyme. An analog of peptide II ...
متن کاملDetection of the protein dimers, multiple monomeric states and hydrated forms of Plasmodium falciparum triosephosphate isomerase in the gas phase.
Dimeric and monomeric forms of the enzyme triosephosphate isomerase (TIM) from Plasmodium falciparum (Pf) have been detected under conditions of nanoflow by electrospray mass spectrometry. The dimer (M = 55 663 Da) exhibits a narrow charge state distribution with intense peaks limited to values of 18(+) to 21(+), maximal intensity being observed for charge states 19(+) and 20(+). A monomeric sp...
متن کاملCavity-creating mutation at the dimer interface of Plasmodium falciparum triosephosphate isomerase: restoration of stability by disulfide cross-linking of subunits.
Disulfide engineering across subunit interfaces provides a means of inhibiting dissociation during unfolding of multimeric enzymes. Two symmetry-related intersubunit disulfide bridges were introduced across the interface of the dimeric enzyme triosephosphate isomerase from Plasmodium falciparum. This was achieved by mutating a tyrosine residue at position 74 at the subunit interface to a cystei...
متن کاملStructure of Plasmodium falciparum triose-phosphate isomerase-2-phosphoglycerate complex at 1.1-A resolution.
Triose-phosphate isomerase, a key enzyme of the glycolytic pathway, catalyzes the isomerization of dihydroxy acetone phosphate and glyceraldehyde 3-phosphate. In this communication we report the crystal structure of Plasmodium falciparum triose-phosphate isomerase complexed to the inhibitor 2-phosphoglycerate at 1.1-A resolution. The crystallographic asymmetric unit contains a dimeric molecule....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002